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Abstract

Abstract
The nondeterminism of Deep Learning (DL) training algorithms and its influence on the explainability of 
neural network (NN) models are investigated in this work with the help of image classification examples. To 
discuss the issue, two convolutional neural networks (CNN) have been trained and their results compared. 
The comparison serves the exploration of the feasibility of creating deterministic, robust DL models and  
deterministic explainable artificial intelligence (XAI) in practice. Successes and limitation of all here carried  
out efforts are described in detail. The source code of the attained deterministic models has been listed in  
this  work.  Reproducibility  is  indexed  as  a  development-phase-component  of  the  Model  Governance 
Framework, proposed by the EU within their excellence in AI approach. Furthermore, reproducibility is a 
requirement for establishing causality for the interpretation of model results and building of trust towards  
the overwhelming expansion of AI systems applications. Problems that have to be solved on the way to 
reproducibility and ways to deal with some of them, are examined in this work.
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Introduction

1 Introduction

1.1 Reproducible ML models

The  reproducibility  of  ML  models  is  a  subject  of  debate  with  many  aspects  under  investigation  by  
researchers and practitioners in the field of AI algorithms and their applications. Reproducibility refers to  
the ability to duplicate prior results using the same means as used in the original work, for example the  
same program code and raw data. However, ML experiences what is called a reproducibility crisis and it is 
difficult  to  reproduce important  ML results,  some also  described as  key  results  [22,21,13,29].  Experience 
reports refer to many publications as being not replicable, or being statistically insignificant, or suffering 
from narrative fallacy [5]. Especially Deep Reinforcement Learning has received a lot of attention with many 
papers [5,27,25,14] and blog posts [24] investigating the high variance of some results. Because it is difficult 
to  decide  which  ML  results  are  trustworthy and generalize  to  real-world  problems,  the  importance  of 
reproducibility is growing. A common problem concerning reproducibility is when the code is not open-
sourced. The review of 400 publications of two top AI conferences in the last years, showed that only 6 % of 
them shared the used code, one third shared the data on which algorithms were tested and half shared  
pseudocode  [16,23].  Initiatives  like  the  2019  ICLR  reproducibility  challenge  [34]  and  the  Reproducibility  
Challenge of NeurIPS 2019 [38,35], that invite members of the AI community to reproduce papers accepted at 
the conference and report on their findings via the OpenReview platform (https://openreview.net/group?
id=NeurIPS.cc/2019/Reproducibility_Challenge),  demonstrate  an  increasing  intention  to  make  machine 
learning trustworthy by making it computationally reproducible [19]. Reproducibility is important for many 
reasons:  For  instance,  to quantify progress in ML, it  has  to be certain that noted model improvements  
originate from true innovation and are not the sheer product of uncontrolled randomness [5]. Also from the 
development point  of  view,  adaptations of  models  to changing requirements  and platforms are  hardly  
possible in the absence of baseline or reference code, which works according to agreed upon expectations.  
The latter could get transparently extended or changed before tested to meet new demands. For ML models,  
it is the so named inferential reproducibility which is important as a requirement and states that when the 
inference procedure is repeated, the results should be qualitatively similar to those of the original procedure  
[13].  However,  training  reproducibility  is  also  a  necessary  step  towards  the  formation  of  a  systematic  
framework for an end-to-end comparison of the quality of ML models. To our knowledge such a framework 
does not yet exist and it should be essential if criteria and guarantees regarding the quality of ML models 
have to be provided. Security and safety considerations are inevitably involved: For instance, when a model  
executes a pure classification exercise, deciding for example if a test image shows a cat or a dog, it is not  
necessarily critical when the model’s decision turns out to be wrong. If however the model is incorporated 
into a clinical  decision-making system, that helps make predictions about pathologic conditions on the 
basis of patients’ data, or is part of an automated driving system (ADS) which actively decides if a vehicle has 
to immediately stop or keep speeding, then the decision has to be verifiably correct and understandable at  
every stage of its formation. The increasing dependency on ML for decision making leads to an increasing 
concern that  the integration of  models  which have not  been fully  understood can lead to unintended 
consequences [20].

1.2 Factors hindering training reproducibility

It  is  well  known  that  when  a  model  is  trained  again  with  the  same  data  it  can  produce  different  
predictions [8,7].  To  the  reasons  that  make  reproducibility  difficult  there  belong:  different  problem 
formulations,  missing  compatibility  between  DNN-architectures,  missing  appropriate  benchmarks,  
different OS, different numerical libraries, system architectures or software environments like the Python 
version etc. Reproducibility as a basis for the generation of sound explanations and interpretations of model  
decisions is also essential in view of the immense computational effort and costs involved when applying or 
adapting algorithms, often without specific knowledge about the hardware, the parameter-tuning and the 
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energy consumption demanded for the training of a model, which at the end might lead to inconclusive 
results. Furthermore, it is also difficult to train models to expected accuracy even when the program code  
and the training data are available. Changes in TensorFlow, in GPU drivers, or even slight changes in the  
datasets, can hurt accuracy in subtle ways [46,45]. In addition, many ML models are trained on restricted 
datasets, for example those containing sensitive patient information, that can’t be made publicly available  
[1]. When privacy barriers are important considerations for data sharing, so called replication processes have 
to be used, to investigate the extent to which the original model generalizes to new contexts and new data  
populations,  and  decide  whether  similar  conclusions  to  those  of  the  original  model  can  be  delivered.  
However, there exist also certain unique challenges which ML reproducibility poses. The training of ML  
models  makes  use  of  randomness,  especially  for  DL,  usually  employing  stochastic  gradient  descent, 
regularization  techniques  etc. [3].  Randomized  procedures  result  in  different  final  values  for  the  model 
parameters every time the code is  executed.  One can set all  possible  random seeds,  however additional  
parameters, commonly named silent parameters, associated with modern deep learning, have been found to 
also have a profound influence on both model performance and reproducibility. High-level frameworks like  
Keras  are  reported  to  hide  low-level  implementation  details  and  come  with  implicit  hyperparameter 
choices already made for the user. Also hidden bugs in the source code can lead to different outcomes in  
dependence of  linked libraries  and different  execution environments.  Moreover,  the  cost  to  reproduce  
state-of-the-art  deep  learning  models  is  often  extremely  high.  In  natural  language  processing  (NLP),  
transformers require huge amounts of data and computational power and can have in excess of 100 billion  
trainable parameters. Large organizations produce models (like OpenAI’s GPT-3) which can cost millions of 
dollars  in  computing  power  to  train  [1,3,12].  To  find  the  transformer  that  achieves  the  best  predictive 
performance for a given application,  meta-learners test thousands of possible configurations. The cost to 
reproduce one of the many possible transformer models has been estimated to range from 1  million to 
3.2 million USD with usage of publicly available cloud computing resources [39,3]. This process is estimated 
to generate CO2 emissions with a volume which amounts to the fivefold of emissions of an average car,  
generated over its entire lifetime on the road. The environmental implications attached to reproducibility  
endeavors of this range are definitely prohibitive [3]. As possible solution to this problem, there has been 
proposed the option to  let  expensive  large models  get  produced only once,  while  adaptations  of  these  
models for special applications should be made transparent and reproducible with the use of more modest  
resources [3].

1.3 Organization and aim of this work

The  majority  of  methods  for  explainable  AI  are  attribute  based,  they  highlight  those  data  features 
(attributes), that mostly contributed to the model’s prediction or decision. Convolutional neural networks 
(CNN, or ConvNet) are state-of-the-art architectures, for which visual explanations can be produced, for  
example with the Gradient-weighted Class Activation Mapping method (Grad-CAM) [37,11], which is also 
the method used in this work. In the second part of this work, Grad-CAM explanations for two pre-trained  
and established CNN models, which use TensorFlow, will be discussed with focus on the differences of their  
results,  when the same test-data are given as input.  It  is  well  known that when different explainability  
methods  are  applied  on  a  neural  network,  different  results  are  to  be  expected.  The  fact  that  a  single  
explainability method, when applied on two similar CNN-architectures, can produce different results for 
the same test-data, has received less attention in the literature but is worth to analyze in the reproducibility  
context.  In  the third part,  the own implementation,  training and results  of  two relatively  simple  CNN  
models are discussed. Differences of the Grad-CAM-explanations for identical images classified with these  
two networks are analyzed,  with special  focus on the influence of the computing infrastructure on the  
model execution. The efforts to render these two models deterministic are described in Section 3 in detail, 
again  with  special  focus  on  the  influence  of  the  computing  infrastructure  on  the  results.  Success  and 
limitations are noted, the partly achieved deterministic code is listed. It is worth mentioning that different  
behaviors  across  versions  of  TensorFlow,  as  well  as  across  different  computational  frameworks  are 
documented to be normally expected. TensorFlow warns that floating point values computed by ops, may  
change at any time and users should rely only on approximate accuracy and numerical stability, not on the  
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specific bits computed. There could be found no experience reports, as to how a change of specific bits could 
influence ML results, for instance in worst case by altering the network’s classification or its explanation, or  
both. According to TensorFlow, changes to numerical formulas in minor and patch releases, should result in  
comparable  or  improved  accuracy  of  specific  formulas,  with  the  caution that  this  might  decrease  the  
accuracy for the overall system. Also models implemented in one version of TensorFlow, cannot run with 
next subversions and versions of TensorFlow. Therefore published code which was once proved to work, is  
possibly not to use again within short time after its creation. To run more than one subversions on the same  
system, when using graphic HW support,  was not possible.  This work aims at drawing attention to the  
challenges  that  adhere  to  creating  reproducible  training processes  in  Deep  Learning and  demonstrates  
practical steps towards reproducibility, discussing their present limitations. In Section 4 conclusions of this 
work and views towards future investigations in the same direction are presented in a summary. It has to be  
noted that the impact of what is called  underspecification, whereby the same training processes produces 
multiple machine-learning models which demonstrate differences in their performance, is out of scope of  
this work [18].
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2 Grad-CAM NN-Explanations

2.1 Network architectures and HW

Convolutional neural networks, originally developed for the analysis and classification of objects in digital  
images, represent the core of most state-of-the-art computer vision solutions for a wide variety of tasks  [41]. 
A brief but comprehensive history of CNN can be found in many sources, for example in  [9], whereby the 
tendency has always been towards making CNN increasingly deeper. Developments of the last years have 
led to the  Inception architecture, which incorporates the so called  Inception modules, that exist already in 
several different versions. A new architecture, which instead of stacks of simple convolutional networks,  
contains  stacks  of  convolutions  itself,  was  proposed by François  Chollet  with  his  Extreme  Inception or 
Xception model.  Xception  was  proved  to  be  capable  of  learning  richer  representations  with  less  
parameters [9]. Chollet delivered the Xception improvements to the Inception family of NN-architectures,  
by entirely replacing Inception modules with depthwise separable convolutions. Xception also uses residual  
connections,  placed  in  all  flows  of  the  network [9,17].  The  role  of  residuals  was  observed  as  especially 
important for the convergence of the network [44], however Chollet moderates this importance, because 
non-residual  models  have been benchmarked with the same optimization configuration as the residual 
ones, which leaves the possibility open, that another configuration might have proved the non-residual 
version better [9].  Finally,  the building of the improved Xception models was made possible because an 
efficient  depthwise  convolution  implementation  became  available  in  TensorFlow.  The  Xception 
architecture has a similar number of parameters as Inception V3. Its performance however has been found  
to be better than that of Inception, according to tests on two large-scale image classification tasks [9]. For 
practical tests in this work, Inception V3 and Xception have been chosen for results comparisons. The two 
networks  are  pretrained on a  trimmed list  of  the  ImageNet  dataset,  so  as  to  be  able  to  recognize  one 
thousand non-overlapping object classes [9].

Inception V3

The exact description of the network, its parameters and performance are given in the work of 
Christian Szegedy [42]. The description of the training infrastructure refers to a system of 50 
replicas, (probably identical systems), running each on a NVidia Kepler GPU, with batch size 32, for 
100 epochs. The time duration of each epoch is not given.

Xception

Chollet has used 60 NVIDIA K80 GPUs for the training, which took a duration of 3 days time. The 
number of epochs is not given. The network and technical details about the training are listed in the 
original work [9].

Xception has  a  similar  number  of  parameters  (ca. 23  million)  as  Inception V3  (ca. 24  million).  The HW 
execution environments employed for the here described experiments are the following:

• HW-1: GPU: NVIDIA TITAN RTX: 24 GB (GDDR6), 576 NVIDIA Turing mixed-precision Tensor 
Cores, 4608 CUDA Cores.

• HW-2: CPU: AMD EPYC 7502P 32-Core, SMT, 2 GHz (T: 2.55 GHz), RAM 128 GB.

• HW-3: GPU: NVIDIA GeForce RTX 2060: 6 GB (GDDR6), 240 NVIDIA Turing mixed-precision Tensor 
Cores, 1920 CUDA Cores.

• HW-4: CPU: AMD Ryzen Threadripper 3970X 32-Core, SMT, 3.7 GHz (T: 4.5 GHz), RAM 256 GB.

• HW-5: CPU: AMD Ryzen 7 5800X 8-Core, SMT, 3.8 GHz (T: 4.7 GHz), RAM 64 GB.

Each of the pretrained models is verified to deliver the same results for all here considered CPU or GPU  
different  execution  environments.  The  classifications  and  the  according  network  explanations  are 
deterministic when performed under laboratory conditions, as also expected. Plausibility and stability issues 
of the explanations will be mentioned parallel to the tests.
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2.2 Inception V3

In this part examples of predictions, calculated with the Inception V3 network are discussed. In Fig. 1 (a) and 
(b) respectively, there are depicted activation heatmaps which have been produced to identify those regions 
of the image  chow-cat,  that  correspond to the dog (“chow”)  and the cat  (“tabby”)  respectively.  Identical 
respective accuracies have been calculated for each classification independent of the employed HW, as was 
verified by the tests performed with all HW-environments listed at the end of section 2.1. The “chow” has 
been predicted with 30 % probability and stands in the first place on the top-predictions-list, while the cat 
gets the third position with a probability of 2.4 %.

In Fig. 2, heatmaps produced by the identification of the “cocker spaniel” (a), the “toy poodle” (b), and the 
“Persian cat” (c) respectively, have been demonstrated for the image spaniel-kitty.

10 Bundesamt für Sicherheit in der Informationstechnik

(a) (b)

Figure  1:  chow-cat: Grad-CAM explanations of Inception V3 for the identification of the 
dog “chow” (a), in the first place on the top-predictions-list and the cat “tabby”(b), in the 
third place on the top-predictions-list. The second place occupies a “Labrador dog”.

(a) (b) (c)

Figure  2: spaniel-kitty: Grad-CAM explanation of Inception V3 for the identification of 
the “cocker spaniel” (a), the “toy poodle” (b) and the “Persian cat” (c), see Table 1.
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In Table 1 there are listed the scores of the first 17 classes on the top-predictions-list, as calculated in two  
HW executions (HW-1,HW-2). The prediction scores are almost identical, as is obvious by comparing the  
columns in  Table 1, while in the few cases, when slight differences exist in the probability values, these  
differences  appear  only  after  the  fourth  decimal  place.  The  “cocker  spaniel”  is  the  top  prediction  and 
represents actually the correct classification of the dog race, predicted with a probability of almost 57 %, 
while  the  “Persian  cat”  in  place  16  of  the  list,  which  is  also  a  correct  prediction,  has  a  probability  of  
approximately 0.5 %. The “toy poodle” with 8.0 % probability stands in the second place on the list, while the  
rest of list places, down to place sixteen of the “Persian cat”, are all occupied by dog races (see Table 1).

2.2.1 Soundness and stability of explanations

A careful observation of the delivered network explanations shows that they are partly arbitrary and hardly  
intuitive, and this independently of a wrong, or right class prediction. For example, the network reasoning  
behind the “toy poodle” classification in Fig. 2 (b), which is wrong as far as the race of the dog is concerned,  
but right as far as the animal category identified (a dog),  cannot be noted as sound. The main reason is  
because the most activated, and therefore the most relevant to the target identification region (marked red),  
points to a part of the image that lies in empty space, beyond the contour of the target. The marked red 
region lies close to what one could describe as a generic feature, the paws, which is common to a variety of 
animals. A too generic feature offers little confidence in being a good explanation, if assumed that it is only 
the accuracy of the feature’s localization in the image that fails. Besides, the algorithm could have focused 
on the vicinity of the paws out of reasons not directly associated with the recognition of the “poodle”.  
Observing that the explanation for the identification of the “Persian cat”, see Fig.  2 (c), highlights the same 
paws,  makes  the  unambiguity  or  definiteness  of  the  explanations  questionable.  Important  is  also  the 
investigation  of  the  stability and  consistency of  the  network’s  explanations,  as  they  relate  to  the 
reproducibility of the network too. For example, it would be expected that a network which concentrated 
on the dog’s head to explain the first place of the top-predictions-list, the “cocker spaniel” in Fig.  2 (a), would 
probably also pick the head to mainly identify the second most probable classification on the list, which the  
“toy poodle”, seen in Fig. 2 (b). This is however not the case, which makes the consistency behind the logic of  
explanations doubtful. Obviously, the cat’s head also receives hardly any attention for the explanation of the  
recognition of the cat in  Fig. 2 (c). It is not possible to identify some certain strategy which the network 

Federal Office for Information Security 11

Class HW-2 HW-1
1 cocker spaniel 0.56762594 0.56761914
2 toy poodle 0.08013367 0.08014054
3 clumber 0.02106595 0.02107035
4 Dandie Dinmont 0.01964365 0.01964012
5 Pekinese 0.01867950 0.01868443
6 miniature poodle 0.01846011 0.01846663
7 Blenheim spaniel 0.01425239 0.01424699
8 Maltese dog 0.01124849 0.01124578
9 Chihuahua 0.01103328 0.01103479
10 Norwich terrier 0.00741338 0.00741514
11 Sussex spaniel 0.00703137 0.00703068
12 Yorkshire terrier 0.00689254 0.00689154
13 Norfolk terrier 0.00662250 0.00662296
14 Lhasa 0.00609926 0.00609862
15 Pomeranian 0.00608485 0.00608792
16 Persian cat 0.00489533 0.00489470
17 golden retriever 0.00428663 0.00428840

Table 1: Inception V3: Classification Probabilities for the image spaniel-kitty, see Fig. 2.
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consistently employs in order to explain classifications, in this case of animals. For further investigations, a 
small part of the image  spaniel-kitty,  namely the part containing the paws,  has been removed from the 
image and the top-predictions-list has been calculated again. With the new test image, spaniel-kitty-paws-
cut as input, the “cocker spaniel” keeps the first place on the top-predictions-list, see Table 2, however the 
“Persian cat” climbes now from place 16 to place 2 with a classification probability rising from 0.5 % to 30 %, 
while the “toy poodle” falls down to the place 4 of the list.

In Table 2, the new top-four predicted classes and their new scores are displayed. There are no great changes  
in  the  explanation  concerning  the  “cocker  spaniel”  for  the  modified  image,  the  head  being  the  part 
highlighted again. However the visual explanations for the identification of the “toy poodle” and the “cat”  
have changed considerably, as in Fig. 3 to see.

The “toy poodle” is now overlayed by a double heat spot, a minor one at the end of the cat’s body and the  
main one to the right of the cat’s  head,  both lying outside the contour of the recognized “poodle”,  see  
Fig. 3(b). Although in this case the classification is correct, the explanation doesn’t make sense at all, because 
the  activation  region  lies  entirely  outside  the  target  (“toy  poodle”).  One  could  argue  that  at  least  the 
explanation for the “Persian cat” in Fig. 3 (c) has been improved, in comparison to the unchanged image. The 
hot activation region approaches now the cat’s head instead of the paws which is more characteristic of the 
target.  However,  a  considerable part  of  the class  activation mapping (marked red),  still  lies  beyond the  
contour of the cat and therefore,  at  least the position of the recognized target,  can be described as not  
accurate  or  even  wrong.  Inception  V3  delivers  identical  results,  with  respect  to  changing  execution  
environments, therefore the explanations and classifications of the network are proved to be deterministic 
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Class HW-2 HW-1
1 cocker spaniel 0.43387938 0.43393657
2 Persian cat 0.03001592 0.03000891
3 Pekinese 0.02654952 0.02654130
4 toy poodle 0.01810920 0.01810851
5 Dandie Dinmont 0.01457902 0.01457707
6 Sussex spaniel 0.01415453 0.01415372
7 Golden retriever 0.01363987 0.01363916
8 Miniature poodle 0.01088122 0.01088199

Table 2: Inception V3: Classification Probabilities for the image spaniel-kitty-paws-cut .

(a) (b) (c)

Figure 3: spaniel-kitty-paws-cut: Grad-CAM explanation of Inception V3 for the identification of 
the  “cocker  spaniel”  (a),  the  “toy  poodle”  (b)  and  the  “Persian  cat”  (c),  when  the  paws  are  
removed from the image (compare results of Fig. 2).
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under laboratory conditions, that is when no intentional or unintentional perturbations are inserted to the  
test data.

2.3 Xception

In analogy to  2.2, object detections and their explanations calculated with the Xception network are here 
discussed. In Fig. 4(a) and (b) there are presented the activation heatmaps, produced by the network for the  
identification of the image regions that correspond to the “dog” (“chow”), and the “cat” respectively, (here 
identified as “Egyptian cat”, whereas Inception V3 identified the cat as a “Tabby cat”, compare Fig. 1).

In  Fig. 5 the  activation  maps  corresponding  to  the  identification  of  the  “cocker  spaniel”,  the  “French 
bulldog”, the “toy poodle” and the “Persian cat” respectively are demonstrated. Similarly to the Inception V3  
case,  described  in  the  previous  section,  all  prediction  scores  are  almost  identical  between  all  HW 
environment executions.

Federal Office for Information Security 13

(a) “chow” (b) “Egyptian_cat”

Figure  4: chow-cat: Grad-CAM explanations of Xception for the identification of the “chow” (a), in the 
first place of the top-predictions-list and the “Egyptian cat” (b), in the second place. Third on the list is  
the “tiger cat” and fourth the “tabby cat”.  For a  comparison, the order of explanations generated by 
Inception V3 is given in the caption of Fig. 1.
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Again, to check the stability of the visual explanations, the identifications of the “cocker spaniel”, the “toy  
poodle” and the “Persian cat” on the image spaniel-kitty-paws-cut have also been tested and the results are 
depicted in Fig. 6.

Xception seems to consistently focus on the head of the identified animal for the classification and also 
doesn’t produce activation regions outside the contour of the target. The consistency of feature attribution  
for the explanation and the accuracy of the target position are thus better for Xception in comparison to 
Inception V3. Because the removal of a part of the image (paws) didn’t affect the explanations, at least for  
the here described experiments, the explanations of Xception can be described as more stable in comparison  
to the explanations of Inception V3. As far as the definiteness of the classifications and the stability of their  
scores are concerned, there are following remarks: Xception can unambigously and correctly distinguish 
between  different  classes,  focusing  on  the  respective  region  of  the  image  that  depicts  the  accordingly 
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(a) “cocker_spaniel” (b) “French_bulldog”

(c) “toy poodle” (d) “Persian cat”

Figure  5:  spaniel-kitty:  Grad-CAM explanations of  Xception for the identification of the 
”cocker spaniel” (a), the “French bulldog” (b), the “toy poodle” (c) and the “Persian cat” (d).

(a) “cocker spaniel” (b) “toy_poodle” (c) “Persian cat”

Figure  6: spaniel-kitty-paws-cut: Grad-CAM explanations of Xception for the identification of the “cocker 
spaniel” (a), the “toy poodle” (b) and the “Persian cat” (c) with paws removed from the image (compare Fig. 5).
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recognized class. However the differentiation of subclasses within a class, here for example of dog breeds 
within the class dogs, is neither definite nor stable. For instance, all identifications of the dog races listed in 
Table 3, produce almost one and the same visual explanation which is close to identical to the explanation 
for  the  “cocker  spaniel”,  on  the  first  place  of  the  top-predictions-list,  (see  Figs.  6 and 5).  This  problem 
probably relates to the quality of image segmentation and fine-grained classification commonly arising when 
categories share a number of similar attributes which are also contained within the same bounding box.

2.4 Inception V3 vs. Xception

Explanation properties  like  correctness,  stability,  definiteness  and accuracy have been already indicated 
while  discussing  the  images  in  the  previous  sections.  As  already mentioned,  Xception  appears  to  have  
certain  advantages  in  comparison  to  Inception V3.  However,  further  experiments  with  both  networks,  
convince that a deeper evaluation should be necessary,  if  these networks have to be trusted for critical  
applications. For example in Fig. 7, Inception V3 has identified the “Persian cat” at the seventeeth place on 
the top-predictions-list but it has also identified a “snowmobile” with a higher probability than that of the  
cat and a “dog sled”, the latter at the fourth from the top position on the top-predictions-list. The activated  
image region to explain the “Persian cat” is remarkably similar to the one which explains the “snowmobile”.  
Puzzling is that for the explanation of the “Persian cat”, the network highlights also a completely irrelevant  
region in the background of the image, to the right over the head of the “Samoyed dog”. Definiteness and 
correctness of the explanations grow rapidly weaker with growing distance from the first score on the top-
predictions-list.  This  well-known  problem  is  obviously  critical,  especially  in  case  it  is  necessary  to 
simultaneously classify more than one object categories in one image. It should be stressed, that the here 
discussed identifications concern objects that belong to the first top-seventeen out of one thousand classes  
that the network can recognize.
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A B
1 Cocker spaniel Cocker spaniel
2 clumber toy poodle
3 Sussex spaniel Blenheim spaniel
4 Blenheim spaniel Pekinese
5 Golden retriever Chihuahua
6 Pekinese Sussex spaniel
7 Chow clumber
8 Toy poodle Golden retriever
9 Chihuahua miniature poodle
10 French bulldog Chow
11 Persian cat Pomeranian
12 Shih-Tzu Shih-Tzu
13 Pomeranian Persian cat

Table  3:  Xception  top-predictions-list  for  the  images  spaniel-kitty (A)  and 
spaniel-kitty-paws-cut (B).
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The activation regions produced with Inception V3 for the “Persian cat”, the “snowmobile” and the “dog  
sled” are to their greatest part overlapping, see Fig. 7. In Fig. 8, Xception’s consistency with regard to the 
choice of attributes to recognize members of the same class, is demonstrated. It seems to remain robust, also 
when lower rank scores are explained, as this example of identification of cats shows, with the “Angora” at 
the twentieth and the “Persian” at the twenty-sixth positions on the top-predictions-list.

In Fig. 9,  Xception highlights image regions that correspond to the classification of the “Samoyed” (first 
position), “dog sled” (ninth position) and “Maltese dog” (fourteenth position) on the top-predictions-list.
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(a) “Angora_cat” (b) “Persian_cat”

Figure  8:  xmas-cat-dog:  Grad-CAM  explanations  of  Xception  for  the 
identification of an “Angora cat” (a) and a “Persian cat” (b).

(a) “dog sled” (b) “snowmobile” (c) “Persian cat”

Figure 7: xmas-cat-dog: Grad-CAM explanations of Inception V3 for the identification of a “dog 
sled” (a), a “snowmobile” (b) and a “Persian cat” (c). The classification probability decreases from 
(a) to (c).



Grad-CAM NN-Explanations

One can see, that the visual activation for the “Samoyed” (a) has much in common with that for the “dog 
sled” (b), while the explanation for the “Maltese dog”, placed in the gap between the “Samoyed” and the 
“Persian cat”,  is obviously wrong at least as far as the accuracy of the position of the identified object is  
concerned and indefinite as regards the class of the object. It is obvious that the consistency of attributes  
makes hardly any sense without the definiteness of classifications.
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(a) “Samoyed” dog (b) “dog sled” (c) “Maltese_dog”

Figure 9: xmas-cat-dog: Grad-CAM explanations of Xception for the identification of “Samoyed” (a),  
a “dog sled” (b), and a “Maltese dog” (c). The classification probability decreases from (a) to (c).
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3 Self-trained Models
The impact of various HW architectures especially on model training will be here investigated after making 
the  source  code  as  deterministic  as  possible.  For  the  training  of  the  here  discussed  models,  the  HW 
execution environments listed at the end of 2.1 have been employed.

3.1 Deterministic ConvNet

A simple convolutional network (ConvNet) created with TensorFlow 2 and Keras was trained as binary 
classifier for pictures showing cats and dogs.  It  consists of alternated  Conv2D (with relu activation) and 
MaxPooling2D layers with five convolutional and four Pooling layers, plus an input and a pre-processing 
layer, as well as a  Flatten and a so called  Dense layer with  sigmoid activation which ends the model. 
Flattening is necessary to transform 3D tensor outputs to 1D inputs for the  Dense layer. The network is 
described in Listing 3. The image dimension in all test models,  PDIM, is set to 180. The training data have 
been  taken  from  the  dataset  dogs-vs-cats provided  by  a  Kaggle  competition [30].  A  limited  number  of 
altogether 2,000 images has been used for training and 1,000 for the validation of the network, with equal  
number of cat and dog images. Binary cross entropy was used as loss function for the training together with 
the rmsprop optimizer in its default configuration and as metrics was chosen accuracy. The main task of the 
network was to create reproducible results, that is to create a deterministic training process. To this purpose 
three OS environment variables had to be set first. Using a Jupyter notebook this can be accomplished by a  
special Jupyter kernel. The setting of the variables reads:

In the Python code several  pseudo-random generators  have to  be initialized  with  a  fixed seed,  Python, 
NumPy, and TensorFlow RNGs are seeded. The according code is as follows:

Because a data augmentation and a dropout-layer have been added to the network to improve accuracy and 
avoid overfitting, also the seed for the random operations of flipping, rotating and zooming of data has to be 
set. The resulting network has a total of 991,041 trainable parameters.

The reproducibility  of  the  training code of  Listing 3 has  been tested and could  be confirmed for  each 
execution  environment  separately,  by  comparing  the  resulting  parameters  and  accuracy  after  the 
completion of each training process. In Listing 4 and Listing 5 the accuracy and a number of corresponding 
network weights which belong to the first and to the last but one layers of the model are displayed, as  
calculated in the HW-1 and HW-2 environments, respectively, after 90 epochs of training. Although the 
accuracies  in  the  two  execution  environments  are  almost  identical,  the  calculated  parameters  are 
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PYTHONHASHSEED=1
TF_DETERMINISTIC_OPS=1
TF_CUDNN_DETERMINISTIC=1

Listing 1: Environment variables set for determinism.

import numpy as np
import tensorflow as tf

seed = 1001
tf.random.set_seed(seed)
np.random.seed(seed)
random.seed(seed)

Listing 2: Pseudo-RNG seeding set for determinism.
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completely  different,  which shows that  each environment  causes  the  model  to converge to a  different  
optimization minimum.
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data_augmentation = keras.Sequential([kl_exp_preproc.RandomFlip("horizontal", seed=1)
                                      kl_exp_preproc.RandomRotation(0.1,seed=1),
                                      kl_exp_preproc.RandomZoom(0.2,seed=1),])
PDIM = 180
inputs = keras.Input(shape=(PDIM,PDIM,3))
x = data_augmentation(inputs)
x = keras.layers.experimental.preprocessing.Rescaling(1./255)(x)
x = keras.layers.Conv2D(filters=32, kernel_size=3, activation="relu")(x)
x = keras.layers.MaxPooling2D(pool_size=2)(x)
x = keras.layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)
x = keras.layers.MaxPooling2D(pool_size=2)(x)
x = keras.layers.Conv2D(filters=128, kernel_size=3, activation="relu")(x)
x = keras.layers.MaxPooling2D(pool_size=2)(x)
x = keras.layers.Conv2D(filters=256, kernel_size=3, activation="relu")(x)
x = keras.layers.MaxPooling2D(pool_size=2)(x)
x = keras.layers.Conv2D(filters=256, kernel_size=3, activation="relu")(x)
x = keras.layers.Flatten()(x)
x = keras.layers.Dropout(0.5, seed=7001)(x)
outputs = keras.layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(loss="binary_crossentropy", optimizer="rmsprop", metrics=["accuracy"])

Listing 3: Deterministic ConvNet.

Out: accuracy: 0.849

In : model_weights[0][:,:,0,0]
Out: <tf.Tensor: shape=(3, 3), dtype=float32, numpy=
     array([[-0.00111067, -0.08925765, -0.03877171],
            [ 0.06882513,  0.07853891, -0.07341643],
            [-0.10082538,  0.05409119, -0.11010181]], dtype=float32)>

In : model_weights[-2][:32,0]
Out: <tf.Tensor: shape=(32,), dtype=float32, numpy=
     array([ 0.02049963, -0.06807294,  0.01771718,  0.00662495,  0.09211864,
             0.03866815,  0.05907019,  0.00925133,  0.02810607, -0.00849974,
             0.0199494 ,  0.01444575, -0.07486248, -0.05971878, -0.04888046,
             0.05762889, -0.114383  , -0.03059661, -0.00386733,  0.04686596,
             0.11158869, -0.00510099, -0.01760828,  0.00915093,  0.06470113,
             0.02472718, -0.17019744, -0.06843327,  0.11263403, -0.05122007,
            -0.02696232,  0.01008716], dtype=float32)>

Listing 4: ConvNet on HW-1: Deterministic training results.

Out: accuracy: 0.836

In:  model_weights[0][:,:,0,0]
Out: <tf.Tensor: shape=(3, 3), dtype=float32, numpy=
     array([[-0.02197945, -0.11502645, -0.06399402],
            [ 0.06629982,  0.07693411, -0.07907421],
            [-0.08929715,  0.07290921, -0.10029382]], dtype=float32)>

In: model_weights[-2][:32,0]
Out: <tf.Tensor: shape=(32,), dtype=float32, numpy=
     array([-0.13660763,  0.08144909,  0.0058543 , -0.02693423,  0.02785763,
             0.16917986, -0.00647367, -0.00365615, -0.01310152,  0.04297437,
             0.00301503,  0.01947881, -0.09520608, -0.05354575, -0.06465469,
             0.01503169, -0.06535202, -0.06438911,  0.07274752, -0.01518494,
            -0.04213503,  0.0165184 , -0.04465574, -0.003416  , -0.09923518,
            -0.00701612, -0.05580736,  0.06382342,  0.07347441, -0.06864858,
            -0.05487159, -0.01903648], dtype=float32)>

Listing 5: ConvNet on HW-2: Deterministic training results.
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Deterministic ConvNet Summary

• Number of layers: 12

• Trainable parameters: 991,041

• Training times:

◦ HW-1: ca. 2 s / epoch

◦ HW-3: ca. 3 s / epoch

◦ HW-4: ca. 20 s / epoch

◦ HW-5: ca. 22 s / epoch

The deterministic ConvNet was developed as a proof of concept and it is by no means an optimized model.  
Therefore,  the  reproducibility  of  its  Grad-CAM  explanations  but  not  their  quality,  are  tested  here.  
Classification  explanations  calculated  here  for  a  test  image  showing  a  Chow-Chow  dog  (image  taken 
from [11]) are depicted for two different execution environments in Fig. 10 and Fig. 11, respectively.  The 
visual explanations remain stable (are reproducible) within each execution environment but they are, quite 
like the classification results, environment dependent. The quality of the classifications is not the object of  
investigation for these simple, first deterministic models.
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(a) 88 % Chow

(b)

Figure  10:  Deterministic  ConvNet  on  HW-1:  Grad-CAM 
explanation of the  right identification of the “Chow” (a), model’s 
accuracy and validation loss curves (b).
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3.2 Deterministic mini Xception

A small version of Xception, the mini Xception-like of Chollet [10], has been chosen to be modified, so as to 
make its  training deterministic.  The system configurations  described in  the previous  section (Listings 1 
and 2),  and the seed settings for the data augmentation had to be applied also in this case.  A couple of 
additional  steps  are however  also  necessary.  The original  model  definition is  as  given in [10].  The final 
version of the code, made deterministic for CPU environments, is displayed in Listing 6. The model counts 
718,849 trainable parameters (while the corresponding number given in [10] is actually the number of total 
parameters). To enhance the layer function’s determinism, the parameters depthwise_initializer and 
the  pointwise_initializer of  the  SeparableConv2D are  set  explicitly  to  the  glorot_uniform 
initializer  with a fixed seed.  The same change is  applied to the  kernel_initializer in  the function 
Conv2D.  This  code  is  reproducible  when  executed  in  CPU  environments  without  graphical  support.  
Runtimes of the deterministic code for HW-2 are given in Table 4.
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(a) 76 % Cat

(b)

Figure  11:  Deterministic  ConvNet  on  HW-2:  Grad-CAM 
explanation of the  false classification of the “Chow” as a “Cat” 
(a), model’s accuracy and validation loss curves (b).
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Switching off parallelism of Tensorflow can be achieved by using the instructions given in Listing 7.

However, these instructions to turn off multi-threading had no practical effect, when applied in the GPU 
environment.  It  was indeed not  possible  to make the GPU work in single-thread mode. To make mini  
Xception deterministic for GPU environments, two changes are necessary in the code listed in  Listing 6 
which actually change the network:

1. replace SeparableConv2D by Conv2D,

2. remove the line containing keras.layers.add().

The  in  this  way  resulting  deterministic  model  however,  has  little  in  common  with  the  original  mini 
Xception.

Mini Xception Summary

• Number of layers: 44

• Trainable parameters: 718,849
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init_glorot_u = tf.keras.initializers.glorot_uniform

inputs = keras.Input(shape=(PDIM, PDIM, 3))
x = data_augmentation(inputs)
x = keras.layers.experimental.preprocessing.Rescaling(1./255)(x)
x = keras.layers.Conv2D(filters=32, kernel_size=5, use_bias=False,
                        kernel_initializer=init_glorot_u(seed=1))(x)

for size in [32, 64, 128, 256, 512]:
    residual = x
    x = keras.layers.BatchNormalization()(x)
    x = keras.layers.Activation("relu")(x)
    x = keras.layers.SeparableConv2D(size, 3, padding="same", use_bias=False,
                                     depthwise_initializer=init_glorot_u(seed=1),
                                     pointwise_initializer=init_glorot_u(seed=2))(x)
    x = keras.layers.BatchNormalization()(x)
    x = keras.layers.Activation("relu")(x)
    x = keras.layers.SeparableConv2D(size, 3, padding="same", use_bias=False,
                                     depthwise_initializer=init_glorot_u(seed=1),
                                     pointwise_initializer=init_glorot_u(seed=2))(x)
    x = keras.layers.MaxPooling2D(3, strides=2, padding="same")(x)
    residual = keras.layers.Conv2D(size, 1, strides=2, padding="same", use_bias=False,
                                   kernel_initializer=init_glorot_u(seed=1))(residual)
    x = keras.layers.add([x, residual])

x = keras.layers.GlobalAveragePooling2D()(x)
x = keras.layers.Dropout(0.5, seed=7001)(x)
outputs = keras.layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(loss="binary_crossentropy", optimizer="rmsprop", metrics=["accuracy"])

Listing 6: mini Xception: Deterministic (on CPU) training code.

Single-thread Multi-thread
ca. 330 s / Epoch ca. 52 s / Epoch

Table 4: Deterministic mini Xception on HW-2

tf.config.threading.set_inter_op_parallelism_threads(1)
tf.config.threading.set_intra_op_parallelism_threads(1)

Listing 7: Switching off parallelism of Tensorflow.
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• Training times:

◦ HW-2: ca. 52 s / epoch
(to compare: single thread 330 s / epoch)

◦ HW-4: ca. 54 s / epoch

◦ HW-5: ca. 56 s / epoch

For a comparison: on HW-1, the non-deterministic training takes ca.  18 s per epoch. The deterministic mini 
Xception  was  developed  as  a  proof  of  concept.  Tests  of  the  Grad-CAM explainability  of  the  network’s  
classifications have also been performed. In Fig. 12 and Fig. 13 there are depicted the visual explanations of 
the model, as well as the training and validation loss curves respectively, after 100 epochs of training in two  
different  execution environments.  The visual  explanations remain stable (are reproducible)  within  each 
execution environment but they are, quite like the classification results, environment dependent. The Grad-
CAM process code used in this work is as given in Section 9.4.3 of [10].
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(a) 99 % Chow

(b)

Figure  12:  Deterministic  Mini  Xception  on  HW-2:  Grad-CAM explanation  of  the 
correct classification as “Chow” (a), model’s accuracy and validation loss curves (b).

(a) 100 % Cat

(b)

Figure 13: Deterministic Mini Xception on HW-5: Grad-CAM explanation of the false 
object classification as “Cat” (a), model’s accuracy and validation loss curves (b).
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4 Conclusions and future work
In this work, the non-reproducibility of the training of DL models in association with the employment of 
different  HW  environments  (with  and  without  GPU)  for  the  execution  of  the  source  code,  has  been 
discussed. The non-reproducibility of models, necessary implies the non-reproducibility of the explanations  
of their results,  the quality of which is of vital importance, given the increasing dependency on ML for  
decision making in many sectors of life, like automotive, telecommunications, healthcare etc. Aside from 
the nondeterminism of training algorithms, core libraries  like TensorFlow,  CNTK,  Theano,  Pytorch and 
low-level libraries like for example cuDNN, are known to exhibit a so-called implementation-level variance 
across  all  their  evaluated versions [33].  That  means that  even if  the variance  introduced by algorithmic 
factors like shuffled batch ordering, dropout regularization, data augmentation etc. becomes eliminated by 
using  fixed  random  seeds,  the  core  implementation  variance  will  still  be  added  to  the  results.  The  
development  of  deterministic  code  for  two  different  CNN  model  architectures  has  been  successfully 
achieved. This has been confirmed with test runs under the condition that the code is executed on similar 
CPU environments with no use of graphic card support (here: AMD Zen architecture with identical number  
of cores). Additionally, the first of the models, the deterministic ConvNet, runs deterministically also with  
activated graphic card support. The technical steps towards the creation of these results are described in 
detail. The code used and instructions are listed. Using the Grad-CAM method, HW-dependent reproducible  
model classifications and their according reproducible explanations have been visually demonstrated for  
both models. The two prototype networks have not been optimized in any way. The number of training  
epochs,  the  training  and  validation  metrics  are  arbitrary.  If  they  should  be  further  optimized,  each 
optimization step has  to  be  rendered reproducible  too.  Earlier  performed tests  had confirmed that  the 
ready-trained  Inception  V3  and  Xception  models  deliver  HW-independent  and  reproducible  results,  
whereby the results  of  the two models  are different.  It  is  well-known that  DL models  undergo further  
optimization stages  after the end of  their  training and before they reach their  final form. For  example, 
ensemble techniques are used to teach a model how to average or combine predictions of multiple models.  
These steps are mostly intransparent and hardly reproducible too [28,6,4,29]. Reproducibility is essential also 
in the context of fault tolerance,  iterative refinement,  debugging and optimization of adaptable models,  
especially  for  large  scale  and  distributed  workflow  applications,  like  cloud  computing  platforms  and 
Industry 4.0 [32]. The need for specific fault tolerance features for the properties of DL algorithms and their 
implementations  has  been  already  discussed  elsewhere  [2,36,31].  Reproducibility  is  also  the  basis  for 
developing comparison criteria and metrics for the objective evaluation of model properties, like robustness 
and trustworthiness [33,19]. Visual model explanations are helpful for humans to create insights from data 
information but  they are seldom unique,  they are often non-intuitive or  not  consistent,  as  regards  the 
selected features for the explanation. Moreover, DL models and their explanations are vulnerable to errors,  
for  instance  when  slightest  perturbations  are  introduced  to  the  input  image [15].  In  addition,  visual 
explanations don’t make transparent how networks produce predictions, why gradients converge etc.  [43]. 
The reproducibility of ML training is expected to boost developments in XAI, with the scope to finally create  
humanly comprehensible, causal interpretations of decisions produced by complex DL models. There exist  
no  globally  accepted  measures  of  accuracy  or  correctness  for  ML  models,  hence  there  is  a  need  for  a  
mathematical formalism to describe properties, which models should prove to have and how to evaluate  
them.  Approaches  to  an  axiomatic  formulation of  attribute-based  predictions  of  DL  networks,  propose 
model properties with respect to the input-data features that must be fulfilled. As such, there have been  
named: completeness, sensitivity, linearity, symmetry, continuity and implementation invariance [40]. For 
the  future,  it  is  intended  to  integrate  some  of  these  properties  as  boundary  conditions  in  model  
implementations,  which  will  have  to  be  satisfied  throughout  the  training  process.  An  investigation,  if  
additional restrictions to the model can positively contribute to the model’s reproducibility seems worth  
trying.  Implementation invariance is  satisfied when two functionally equivalent networks find identical  
attributions  for  the  same  input  image  and  baseline  image [26].  This  work  shows  that  a  single 
implementation can be functionally non-equivalent to itself,  if  executed in different HW environments.  
Future attempts to alleviate this condition should not completely disregard the investigation of also open 
architectures and standards for graphic cards.
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